History: Machine Learning Models
Source of version: 16 (current)
Copy to clipboard
{syntax type="markdown" editor="wysiwyg"} {img src="display1737" link="display1737" width="1000" rel="box[g]" imalign="center" desc="Click to expand" align="center" styleimage="border"} You can create ((Machine Learning)) models from scratch or from templates ## Templates The template is the best approach to begin creating your machine learning model. It allows us to create a machine learning model based on commonly observed problems, for example the MLT. {img type="attId" attId="95"} ## Available Templates Actually Tiki only support one template : ## More Like This (MLT) The MLT template solves the problems associated with suggesting similar content (finds documents that are "like" a given set of documents). This emulates ((Module More Like This)) More info: https://github.com/RubixML/RubixML/issues/75 ### Transformers and Learners for MoreLikeThis {FANCYTABLE(head="**Transformers and Applied Learners**|**Arguments**" sortable="n")} TextNormalizer | StopWordFilter | WordCountVectorizer| maxVocabulary :1000 , minDocumentFrequency :1 ,maxDocumentFrequency: 500 ,okenizer :default BM25Transformer | alpha :1.2 , beta :0.75 KDNeighbors | k:20, weighted:true, tree : BallTree {FANCYTABLE} {img src="display1748" link="display1748" width="800" rel="box[g]" imalign="center" desc="Click to expand" align="center" styleimage="border"} <br /> {HTML()} <style> .thumbcaption { display: none; } #page-data > p:first-of-type, .wikipreview .wikitext > p:first-of-type { font-size: 120%; padding: 2rem; background: #f0f0f0; border-radius: .0rem; } </style> {HTML}