Loading...
 
Skip to main content

History: Machine Learning Models

Source of version: 16 (current)

Copy to clipboard
            {syntax type="markdown"  editor="wysiwyg"} {img src="display1737" link="display1737" width="1000" rel="box[g]" imalign="center" desc="Click to expand" align="center" styleimage="border"} 
You can create ((Machine Learning)) models from scratch or from templates

## Templates

The template is the best approach to begin creating your machine learning model. It allows us to create a machine learning model based on commonly observed problems, for example the MLT. 
{img type="attId" attId="95"}

## Available Templates

 Actually Tiki only support one template :

## More Like This (MLT)

The MLT template solves the problems associated with suggesting similar content (finds documents that are "like" a given set of documents). 
This emulates ((Module More Like This)) 
More info: https://github.com/RubixML/RubixML/issues/75

### Transformers and Learners for MoreLikeThis


{FANCYTABLE(head="**Transformers and Applied Learners**|**Arguments**" sortable="n")} 
TextNormalizer | 
StopWordFilter | 
WordCountVectorizer| maxVocabulary :1000 , minDocumentFrequency :1 ,maxDocumentFrequency: 500 ,okenizer :default 
BM25Transformer | alpha :1.2 , beta :0.75 
KDNeighbors | k:20, weighted:true, tree : BallTree 
{FANCYTABLE}

{img src="display1748" link="display1748" width="800" rel="box[g]" imalign="center" desc="Click to expand" align="center" styleimage="border"}
<br /> 
{HTML()}


<style>
.thumbcaption {
    display: none;
}
#page-data > p:first-of-type, .wikipreview .wikitext > p:first-of-type {
    font-size: 120%;
    padding: 2rem;
    background: #f0f0f0;
    border-radius: .0rem;
}
</style>
{HTML}